A Small Molecule p75NTR Ligand, LM11A-31, Reverses Cholinergic Neurite Dystrophy in Alzheimer's Disease Mouse Models with Mid- to Late-Stage Disease Progression
نویسندگان
چکیده
Degeneration of basal forebrain cholinergic neurons contributes significantly to the cognitive deficits associated with Alzheimer's disease (AD) and has been attributed to aberrant signaling through the neurotrophin receptor p75 (p75NTR). Thus, modulating p75NTR signaling is considered a promising therapeutic strategy for AD. Accordingly, our laboratory has developed small molecule p75NTR ligands that increase survival signaling and inhibit amyloid-β-induced degenerative signaling in in vitro studies. Previous work found that a lead p75NTR ligand, LM11A-31, prevents degeneration of cholinergic neurites when given to an AD mouse model in the early stages of disease pathology. To extend its potential clinical applications, we sought to determine whether LM11A-31 could reverse cholinergic neurite atrophy when treatment begins in AD mouse models having mid- to late stages of pathology. Reversing pathology may have particular clinical relevance as most AD studies involve patients that are at an advanced pathological stage. In this study, LM11A-31 (50 or 75 mg/kg) was administered orally to two AD mouse models, Thy-1 hAPPLond/Swe (APPL/S) and Tg2576, at age ranges during which marked AD-like pathology manifests. In mid-stage male APPL/S mice, LM11A-31 administered for 3 months starting at 6-8 months of age prevented and/or reversed atrophy of basal forebrain cholinergic neurites and cortical dystrophic neurites. Importantly, a 1 month LM11A-31 treatment given to male APPL/S mice (12-13 months old) with late-stage pathology reversed the degeneration of cholinergic neurites in basal forebrain, ameliorated cortical dystrophic neurites, and normalized increased basal forebrain levels of p75NTR. Similar results were seen in female Tg2576 mice. These findings suggest that LM11A-31 can reduce and/or reverse fundamental AD pathologies in late-stage AD mice. Thus, targeting p75NTR is a promising approach to reducing AD-related degenerative processes that have progressed beyond early stages.
منابع مشابه
A small molecule p75NTR ligand prevents cognitive deficits and neurite degeneration in an Alzheimer's mouse model
The p75 neurotrophin receptor (p75(NTR)) is associated with multiple mechanisms linked to Alzheimer's disease (AD); hence, modulating its function might confer therapeutic effects. In previous in vitro work, we developed small molecule p75(NTR) ligands that inhibited amyloid-β-induced degenerative signaling and prevented neurite degeneration. In the present study, a prototype p75(NTR) ligand, L...
متن کاملSmall molecule p75NTR ligands reduce pathological phosphorylation and misfolding of tau, inflammatory changes, cholinergic degeneration, and cognitive deficits in AβPP(L/S) transgenic mice.
The p75 neurotrophin receptor (p75NTR) is involved in degenerative mechanisms related to Alzheimer's disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, sm...
متن کاملA small molecule p75NTR ligand normalizes signalling and reduces Huntington’s disease phenotypes in R6/2 and BACHD mice
Decreases in the ratio of neurotrophic versus neurodegenerative signalling play a critical role in Huntington’s disease (HD) pathogenesis and recent evidence suggests that the p75 neurotrophin receptor (NTR) contributes significantly to disease progression. p75NTR signalling intermediates substantially overlap with those promoting neuronal survival and synapse integrity and with those affected ...
متن کاملThe recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review
Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...
متن کاملThe recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review
Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...
متن کامل